PositivePulse

PositivePulse As a UK endocrinologist and obesity specialist, I have specialised in metabolic disease, obesity and diabetes for 20 years.

I have led many clinical trials and published many academic papers relating to obesity.

Storage and Breakdown of FatFats in food consumed by the body are broken down during digestion into fatty acids and glyc...
29/04/2025

Storage and Breakdown of Fat
Fats in food consumed by the body are broken down during digestion into fatty acids and glycerol, which enter the bloodstream and are transported throughout the body. Excess fatty acids are synthesized into triglycerides in the liver and fat cells and then stored. When we consume too many calories, the body stores this excess fat as adipose tissue for use during times of high energy demand.
Storage: When we eat, fat is broken down in the intestines, and fatty acids and glycerol enter the bloodstream. They are transported through the bloodstream to adipose tissue, where they are converted into triglycerides and stored in fat cells. This process is regulated by hormones such as insulin, which prompts fat cells to combine fatty acids and glycerol to form triglycerides and store them.
Catabolism: Fat stores are mobilized when the body needs energy (e.g., during exercise or hunger). Hormones such as adrenaline and noradrenaline activate lipolytic enzymes in fat cells that begin to break down stored triglycerides into fatty acids.
Release and Transport of Fatty Acids
Broken-down fatty acids are transported through the bloodstream to the liver, muscles, and other tissues that use fatty acids as an energy source. Fatty acids can be transported where they are needed for energy via fatty acid-binding proteins (FABP) and plasma proteins such as albumin.
Muscles: During exercise, muscle cells have a high energy demand, especially during aerobic exercise, and fat becomes an important energy source. Fatty acids enter the muscle cell and are broken down into carbon dioxide and water through the process of "beta-oxidation" in the mitochondria, which also releases ATP (cellular energy).
Liver: Fatty acids also enter the liver, where liver cells convert them through fatty acid oxidation into ketone bodies, which serve as an energy source for the brain and other tissues, especially during long periods of fasting or on a low-carbohydrate diet like the ketogenic diet.
β-Oxidation (Process of Fatty Acid Oxidation)
In the cells, fatty acids enter the mitochondria and undergo β-oxidation, which is the primary catabolic process for fatty acids. Each oxidation process removes two carbon atoms to create an acetyl-coenzyme A (acetyl-CoA). These acetyl-coenzyme A molecules enter the tricarboxylic acid cycle (also known as the Krebs cycle) and ultimately pass through the respiratory chain to produce ATP. This process is the central step in the energy-providing process for fats.
Production and Use of Ketone Bodies
When the body is exposed to prolonged fasting or low carbohydrate intake, the liver converts fatty acids into ketone bodies. Ketone bodies (including acetoacetic acid, beta-hydroxybutyric acid, and acetone) are a highly efficient energy source, especially for the brain. Normally, the brain relies primarily on glucose, but during periods of starvation, it uses ketone bodies as an alternative energy source.
Regulation of Fat Metabolism
Fat metabolism is regulated by a variety of hormones and enzymes. Here are some key regulators:
Insulin: Insulin is the main storage hormone in fat metabolism. When blood sugar levels are high, insulin secretion increases, promoting fat storage. Insulin inhibits lipolysis and helps store energy as fat.
Epinephrine and Norepinephrine: These hormones are released in response to stress, exercise, or hunger and promote the breakdown of fat, releasing fatty acids into the bloodstream.
Growth Hormone: This hormone is important during childhood growth; it also helps with the breakdown of fat and promotes the release of fatty acids.
Testosterone and Estrogen: S*x hormones also affect fat distribution and metabolism. For example, testosterone contributes to fat burning, while estrogen can promote fat storage in certain areas, such as the thighs and buttocks.

Lipedema: Troubles Caused by Fat Metabolism ImbalanceLipedema is a chronic disease that mainly affects the lower extremi...
29/04/2025

Lipedema: Troubles Caused by Fat Metabolism Imbalance
Lipedema is a chronic disease that mainly affects the lower extremities. It is characterized by abnormal and uneven accumulation of adipose tissue. This condition often presents bilaterally symmetrically, usually starting from the distal part of the legs and gradually spreading upwards.
Lymphedema: Swelling Caused by Obstructed Lymphatic Circulation
Lymphedema occurs due to a dysfunction in the lymphatic system, which leads to poor lymphatic fluid drainage. Excessive lymphatic fluid accumulates in the interstitial spaces, thereby causing local or systemic swelling.

I am proud to have been honoured with a Gold Star Award from the Mayor of Walsall.The nomination was made by the Walsall...
24/04/2025

I am proud to have been honoured with a Gold Star Award from the Mayor of Walsall.
The nomination was made by the Walsall Women's Forum and recognises the achievements of our team in delivering high standards of patient care. Walsall's lipid service has won local and national awards since it was established almost 30 years ago.

GLP-1 (Glucagon-Like Peptide-1) is a naturally occurring peptide hormone that has a number of physiological roles in the...
17/04/2025

GLP-1 (Glucagon-Like Peptide-1) is a naturally occurring peptide hormone that has a number of physiological roles in the human body, primarily related to insulin secretion, blood glucose regulation and weight management. GLP-1's effects are often closely related to blood glucose regulation and gastrointestinal tract function, and therefore has a wide range of applications in the treatment of diabetes and obesity.
The main effects of GLP-1:
Promotes insulin secretion: GLP-1 promotes insulin secretion after eating, especially when blood glucose levels are elevated, helping to lower postprandial blood glucose levels.
Suppresses gastric emptying: GLP-1 slows the emptying of stomach contents, making you feel full and helping to reduce the amount of food you eat.
Appetite suppression: GLP-1 also suppresses appetite by acting on the satiety centre in the brain, which in turn reduces the amount of food eaten. This is the most important mechanism in weight loss treatment.
Regulation of blood sugar levels: GLP-1 is highly effective in regulating blood glucose, particularly by increasing insulin secretion and decreasing glucagon secretion, thereby helping to control postprandial blood glucose.
Improvement of fat metabolism: GLP-1 has also been shown to contribute to fat burning and may play an active role in weight loss.Use of GLP-1-based drugs:
Due to their many benefits, GLP-1-based drugs have been used to treat type 2 diabetes and obesity. These drugs often mimic the effects of GLP-1 to increase insulin secretion, reduce appetite and accelerate fat metabolism.
Common GLP-1 drugs include:
Liraglutide, such as Saxenda (for weight loss) and Victoza (for diabetes management).
Dulaglutide, such as Trulicity.
Semaglutide, e.g. Ozempic and Wegovy, a GLP-1 receptor agonist that has been widely used in recent years for weight loss and diabetes management.
GLP-1 and weight loss:
The GLP-1 class of drugs has been shown to have a significant effect on weight loss, particularly in patients with obesity and type 2 diabetes. These medicines help patients reduce calorie intake naturally by reducing appetite and delaying gastric emptying, resulting in healthy weight loss.
Side effects of GLP-1:
Although GLP-1 drugs have many benefits, they can also cause a number of side effects, especially in the early stages of treatment. Common side effects include:
Nausea and vomiting (especially in the beginning)
Diarrhoea or constipation
Stomach problems
Low blood sugar (especially when used in combination with other hypoglycaemic agents)
GLP-1 analogues have been shown to be very effective in the treatment of type 2 diabetes and in weight reduction, but their use must be monitored by a doctor to ensure they are safe and effective.

Address

74 Berkeley Street
London
EC4G5ST

Website

Alerts

Be the first to know and let us send you an email when PositivePulse posts news and promotions. Your email address will not be used for any other purpose, and you can unsubscribe at any time.

Share

Share on Facebook Share on Twitter Share on LinkedIn
Share on Pinterest Share on Reddit Share via Email
Share on WhatsApp Share on Instagram Share on Telegram