Inventra Medclin Biomedical Healthcare and Research Center

  • Home
  • India
  • Kalyan
  • Inventra Medclin Biomedical Healthcare and Research Center

Inventra Medclin Biomedical Healthcare and Research Center To promote health-care facility and research into the study network biology of Aging and aging relat

पैदल चलना: सबसे सरल, सबसे असरदार व्यायाम!        आज की भाग-दौड़ वाली जिंदगी में लोग जिम, मशीनें और गैजेट्स खोजते रहते है...
03/12/2025

पैदल चलना: सबसे सरल, सबसे असरदार व्यायाम!



आज की भाग-दौड़ वाली जिंदगी में लोग जिम, मशीनें और गैजेट्स खोजते रहते हैं, लेकिन आयुर्वेद और आधुनिक विज्ञान, दोनों कहते हैं कि पैदल चलना शरीर का सबसे प्राकृतिक, सुरक्षित और सम्पूर्ण व्यायाम है।
न कोई खर्च, न कोई एक्स्ट्रा समय—बस रोज़ 20–30 मिनट की निरंतर चाल आपकी उम्र में सालों का इज़ाफ़ा कर सकती है।

🧬 क्यों है पैदल चलना ‘ऑल-इन-वन’ एक्सरसाइज़?

पैदल चलने से शरीर के लगभग 80% हिस्से एक्टिव होते हैं।

दिल मज़बूत

फेफड़े साफ

ब्लड प्रेशर संतुलित

शुगर कंट्रोल

पेट की चर्बी कम

नींद बेहतर

दिमाग शांत

यह एक ऐसा व्यायाम है जो युवा से लेकर बुज़ुर्ग तक—हर उम्र के लिए सुरक्षित और अत्यंत प्रभावी है।

🩺 विज्ञान क्या कहता है?

रिसर्च बताती है कि रोज़ तेज़ 30 मिनट चलने से—

हृदय रोग का खतरा 35–40% कम

डायबिटीज का रिस्क 30% कम

डिप्रेशन 25% कम

वजन 2–3 गुना तेजी से घटता है

जॉइंट्स की जकड़न 40% कम हो जाती है

🌿 आयुर्वेदिक दृष्टि: “चालनं सर्वव्याधि नाशकं”

आयुर्वेद के अनुसार पैदल चलना—

वात को संतुलित करता है

हृदय और पाचन को मजबूत करता है

अग्नि बढ़ाता है

नींद को सुधरता है

शरीर में उर्जा प्रवाह सुधारता है

यही कारण है कि प्राचीन वैद्यों ने भोजन के बाद 500 कदम चलने की सलाह दी है।

🔥 कब, कितना और कैसे चलें कि फायदे ‘दोगुने’ मिलें?
1️⃣ सुबह की तेज चाल: दिन की सबसे शक्तिशाली शुरुआत

सुबह 5:30–7 बजे के बीच की पैदल चाल शरीर को तीन बड़े लाभ देती है—
✔ ऑक्सीजन ज्यादा
✔ दिमाग शांत
✔ मेटाबॉलिज्म तेज

कितना:
20–30 मिनट तेज चाल (Brisk Walk)
कैसे:
एड़ी से ज़मीन छुए, कदम सधे हुए, सांस गहरी लें

2️⃣ दोपहर/शाम की वॉक—खाना पचाने की चाबी

खाना खाने के बाद 20–25 मिनट बैठना या मोबाइल चलाना पेट की गैस, एसिडिटी और सुस्ती बढ़ाता है।
लेकिन खाना खाने के 20 मिनट बाद 500–800 कदम चलना हर रोग का इलाज है।

✔ गैस नहीं बनेगी
✔ पेट हल्का
✔ ब्लड शुगर नियंत्रित
✔ नींद बेहतर

3️⃣ रात को हल्की चाल—दिमाग भी साफ, पेट भी

रात में 10–12 मिनट की हल्की वॉक शरीर को रीसेट करती है।
✔ कब्ज मिटती है
✔ नींद गहरी
✔ पाचन सुधरता है

ध्यान रहे—बहुत तेज़ नहीं चलना, वरना शरीर एक्टिव हो जाएगा और नींद टूट सकती है।

⏱️ कितना चलना ‘सबसे परफेक्ट’?

शुरुआती लोग: 15–20 मिनट

सामान्य फिटनेस: रोज़ 30–40 मिनट

वजन घटाना: 45–60 मिनट brisk walking

डायबिटिक/BP वाले: दो बार—सुबह 30 मिनट + शाम 20 मिनट

💥 ये 5 तरीके अपनाएँ—फायदे 2 गुना मिलेंगे
⭐ 1. अपने कदमों की स्पीड 10% बढ़ाएँ

धीमी चाल से कैलोरी 1X
तेज़ चाल से कैलोरी 2–3X
ब्रिस्क वॉक (थोड़ी तेज़) सबसे बेहतर है।

⭐ 2. खाली पेट सुबह चलना—फैट बर्न दोगुना

सुबह शरीर फैट ब्लॉक तोड़ने में सबसे सक्रिय होता है।
खाली पेट पैदल चलना पेट की चर्बी घटाने में तेज़ी से मदद करता है।

⭐ 3. घास पर नंगे पैर चलें—आँखें, दिमाग और ब्लड सर्कुलेशन बेहतर

Acupressure पॉइंट्स एक्टिव होते हैं।
बहुत पुराने समय से यह तरीका शरीर की ऊर्जा बढ़ाने और तनाव कम करने के लिए प्रसिद्ध है।

⭐ 4. मोबाइल मत देखें—सांस पर ध्यान दें

गहरी सांस के साथ चलने से—

फेफड़े मजबूत

ऑक्सीजन आपूर्ति बेहतर

दिमाग शांत

हृदय स्वस्थ

यह "Mindful Walking" कहलाती है।

⭐ 5. सुबह धूप में 10 मिनट की वॉक—Vitamin D + Warm-up

यह हड्डियों, मन और रोग प्रतिरोधक क्षमता के लिए वरदान है।

🥗 क्या खाएँ कि पैदल चलने के फायदे बढ़ें?

चलने से 15 मिनट पहले गुनगुना पानी

वॉक के बाद हल्का नारियल पानी

नाश्ते में फाइबर + प्रोटीन

रात में ज्यादा भारी खाना न खाएँ

⚠️ कौन-कौन सी गलतियाँ वॉकिंग के फायदे कम कर देती हैं?

❌ चलते समय मोबाइल देखना
❌ बहुत भरा हुआ पेट लेकर चलना
❌ बहुत तेज चाल से दौड़ने जैसी गति बनाए रखना
❌ गलत जूते पहनना
❌ तुरंत बैठ जाना

🧭 निष्कर्ष: पैदल चलना—लाइफ बदलने वाली आदत

पैदल चलना दवा नहीं, जीवनशैली का असली आधार है।
यह शरीर, मन, नींद, वजन, पाचन और हृदय सभी को एक साथ बेहतर करता है—वो भी बिना किसी खर्च के।

आज से 20–30 मिनट अपने लिए निकालें…
आपके कदम आपको बीमारी से दूर, और सेहत के और करीब ले जाएंगे।

A Guide to Skin Issues1. Pustule (पीप-भरी फुंसी)त्वचा पर एक छोटा सा दाना जिसमें पीप भरी हो।2. Fissure (गहरी दरार)त्वचा म...
01/12/2025

A Guide to Skin Issues

1. Pustule (पीप-भरी फुंसी)
त्वचा पर एक छोटा सा दाना जिसमें पीप भरी हो।

2. Fissure (गहरी दरार)
त्वचा में गहरी क्रैक या कट, जो दर्दनाक हो सकता है।

3. Scar (दाग/दाग का निशान)
घाव भरने के बाद बनी मरम्मत की हुई ऊतक की लाइन।

4. Eczema (एक्ज़िमा)
त्वचा पर सूजन, लालिमा और खुजली वाला पैच।

5. Papules (छोटे उठे हुए दाने)
त्वचा पर छोटे, ठोस, उभरे हुए दाने—आमतौर पर बिना पीप।

6. Tumor (गांठ/ठोस उभार)
त्वचा के नीचे ठोस मास—आकार बड़ा या छोटा हो सकता है।

7. Scales (परतदार त्वचा / सोरायसिस जैसी परतें)
त्वचा की सूखी, छिलने वाली परतें, अक्सर सोरायसिस में दिखती हैं।

8. Erythema (लालिमा)
किसी भी तरह की जलन या सूजन से त्वचा का लाल हो जाना।

9. Vitiligo (सफेद दाग / पिग्मेंट लॉस)
त्वचा पर वह क्षेत्र जहाँ मेलानिन कम हो जाता है।

10. Cyanosis (नीली त्वचा)
शरीर में ऑक्सीजन कम होने पर त्वचा का नीला/बैंगनी दिखना।

11. Ulcer (घाव / खुला घाव)
त्वचा पर गहरा खुला जख्म जो ठीक होने में समय लेता है।

12. Necrosis (मृत ऊतक)
त्वचा का वह हिस्सा जहाँ ऊतक मर चुके हों—काला या गहरा रंग।

30/11/2025

A study in Nature Communications shows that global warming may trigger an abrupt shift in the tropical climate system towards stronger and more predictable El Niño-Southern Oscillation (ENSO) cycles, intensifying climate impacts across the globe.

Link to the article in the comments.

30/11/2025

Small cell lung cancer represents 10% to 15% of all lung cancers, and approximately 16 000 cases were diagnosed in the US in 2024.

📝 This JAMA Patient Page describes small cell lung cancer and its symptoms, diagnosis and staging, treatment, and prognosis.

https://ja.ma/48iYgu2

30/11/2025

The gut microbiome can influence brain activity and complex behaviours. A Review in Nature Reviews Microbiology discusses microbiome-associated effects on social behaviour in laboratory model organisms, free-living animals and humans, and considers potential mechanistic pathways.

Link to the Review in the comments.

🧬🌾 RESEARCH 🌾🧬CnERF109 positively regulates expression of phospholipase isoform-encoding CnPLA1 to enhance lipid remodel...
30/11/2025

🧬🌾 RESEARCH 🌾🧬

CnERF109 positively regulates expression of phospholipase isoform-encoding CnPLA1 to enhance lipid remodeling and antioxidant defense, thereby improving cold tolerance in Qinghai–Tibet Campeiostachys nutans Griseb - Jiang et al.

🔗 doi.org/10.1093/jxb/eraf307?utm_source=threads&utm_medium=social&utm_campaign=fedica-RSS

🚫 Just 28 days without parabens and phthalates reversed cancer-linked changes in breast tissue. This could be life-savin...
30/11/2025

🚫 Just 28 days without parabens and phthalates reversed cancer-linked changes in breast tissue.

This could be life-saving.

A new study suggests that steering clear of common chemicals found in personal care products for just 28 days may reverse early, cancer-related changes in breast tissue.

Researchers publishing in Chemosphere found that avoiding parabens and phthalates—preservatives and fragrance agents commonly used in cosmetics—led to measurable molecular improvements in breast samples. These included reduced disruption in critical cellular pathways tied to cancer development, such as PI3K-AKT/mTOR, autophagy, and apoptosis. The rapid turnaround highlights how even short-term lifestyle changes can have a profound impact on cellular health.

Parabens and phthalates are known endocrine disruptors that mimic estrogen, a hormone linked to breast cancer risk. The study, which analyzed breast tissue before and after a month-long detox from these substances, provides compelling evidence that exposure to xenoestrogens may alter breast tissue at the molecular level—and that these changes may be reversible. Scientists say the findings open new doors for prevention strategies, offering a hopeful message: reducing your exposure to everyday chemicals could help protect your health, even in a matter of weeks.

Source: Madubata, C., et al. . Short-term avoidance of endocrine-disrupting chemicals reverses molecular changes in breast tissue. Chemosphere

20/11/2025

Did you know a single immune cell can repair a brain vessel?

We've looked at immune cells fighting cancer and chasing pathogens in my previous reels... but their abilities go far beyond that.

Here's one of their most unexpected jobs: repairing a broken blood vessel in the brain.

In this video, a single macrophage (in green!) rushes to a ruptured brain blood vessel (endothelial cells, orange) - the kind of break that can cause hemorrhagic stroke or microbleeds -and literally grabs both loose ends and pulls them back together.

Using high-resolution live imaging and a laser-induced rupture model, researchers discovered that macrophages don't just clean up damage. They physically fix it!

They extend filopodia and lamellipodia, adhere to each broken end, and generate traction forces that help the vessel reseal. This reveals a completely new role for macrophages in maintaining brain vascular integrity and can open doors to new stroke therapies.

Credits: Liu et al Immunity 2016

20/11/2025
20/11/2025

“When I went to high school, I read a book on Madam Curie and thought that it would be a good thing to become a scientist."

Yuan T. Lee became a scientist after first being inspired by another Nobel Prize laureate - Marie Skłodowska Curie.

Lee went on to study chemistry, with a particular interest in reaction dynamics. In 1986 he was awarded the Nobel Prize in Chemistry for his work.

Read more: https://bit.ly/37nE2z4

Cancer therapy targeting acetylation and autophagy.💡 Liu, Y., Yan, Z., Fu, Z. et al. Crosstalk between acetylation modif...
16/11/2025

Cancer therapy targeting acetylation and autophagy.

💡 Liu, Y., Yan, Z., Fu, Z. et al. Crosstalk between acetylation modification and autophagy in cancer: roles, mechanisms, and therapeutic potential. Cell Death Discov. 11, 522 (2025). https://doi.org/10.1038/s41420-025-02809-x

She spent 30 years mapping a single molecule—insulin—atom by atom. Her hands were crippled by arthritis, but she gave me...
15/11/2025

She spent 30 years mapping a single molecule—insulin—atom by atom. Her hands were crippled by arthritis, but she gave medicine the blueprints to save millions. She was the only British woman to ever win the Nobel Prize in Chemistry.
Oxford, 1934.
A young chemist named Dorothy Crowfoot peered into an X-ray crystallography camera at a tiny crystal of insulin. She was trying to see something no human had ever seen: the exact arrangement of every atom in the molecule that keeps diabetics alive.
The technology was primitive. The calculations would take decades. And Dorothy's hands were already beginning to twist with rheumatoid arthritis that would eventually cripple them.
She started working on insulin anyway. She would spend the next 35 years decoding it.
THE INVISIBLE ARCHITECTURE
Dorothy Hodgkin didn't discover new molecules. She did something harder: she revealed their hidden architecture.
Using X-ray crystallography—a technique where you shoot X-rays through a crystal and analyze the diffraction pattern—she could determine exactly how atoms were arranged in three-dimensional space.
It sounds simple. It was brutally difficult.
Each crystal produced a pattern of dots. Each pattern required thousands of mathematical calculations to interpret. Before computers, this meant years of manual calculation for a single molecule. One wrong assumption could invalidate months of work.
Dorothy had patience most people can't imagine. And she had something else: an almost mystical ability to see structure in patterns that looked like noise to everyone else.
PENICILLIN: THE WARTIME BREAKTHROUGH
In 1942, during World War II, Dorothy was recruited for an urgent project: determine the structure of penicillin.
Penicillin was already being used to treat wounded soldiers, but producing it was slow and inefficient because scientists didn't know its exact molecular structure. They were manufacturing it through trial-and-error fermentation.
If Dorothy could map penicillin's structure, chemists could potentially synthesize it—mass-producing the miracle drug that was saving soldiers' lives.
She worked obsessively. In 1945, after three years of calculations, she revealed penicillin's structure: a four-membered beta-lactam ring—unusual, unexpected, and crucial to its antibacterial properties.
Her work enabled mass production and synthetic modifications of penicillin. Countless lives saved because Dorothy could read the language of crystals.
VITAMIN B12: REVERSING A DEATH SENTENCE
In 1948, Dorothy turned her attention to vitamin B12—the molecule whose absence causes pernicious anemia, a disease that slowly kills through fatigue, neurological damage, and cognitive decline.
Before B12 was identified, pernicious anemia was a death sentence. After it was isolated, it could be treated—but scientists still didn't know its structure.
Dorothy spent eight years on it. Vitamin B12 was the most complex molecule ever analyzed by X-ray crystallography at that time.
In 1954, she published the complete structure.
It was stunning: a cobalt atom at the center, surrounded by a complex corrin ring. The structure explained how B12 worked and enabled better treatment and synthesis.
People who would have died from pernicious anemia lived because Dorothy patiently mapped every atom.
INSULIN: THIRTY-FIVE YEARS OF PATIENCE
But insulin was Dorothy's obsession. Her life's work.
She started in 1934 and wouldn't finish until 1969—thirty-five years of patient, meticulous work.
Insulin was monumentally complex: 51 amino acids arranged in a precise three-dimensional structure. Understanding it required technology that didn't exist when she started.
But Dorothy kept at it. Through World War II. Through raising three children. Through worsening arthritis that twisted her hands into claws and made holding equipment agonizing.
She worked anyway. With deformed hands that could barely grip a pen, she continued mapping atoms.
Finally, in 1969, she published the complete structure of insulin—a breakthrough that enabled synthetic insulin production and deeper understanding of diabetes treatment.
By then, she'd been working on that single molecule for longer than most scientific careers last.
THE NOBEL PRIZE
In 1964, Dorothy Hodgkin was awarded the Nobel Prize in Chemistry for her determinations of the structures of important biochemical substances by X-ray techniques.
She was only the third woman ever to win the Nobel Prize in Chemistry. She remains the only British woman to have won it—60 years later, she's still the only one.
The Nobel recognized her work on penicillin, B12, and other molecules. But everyone knew: Dorothy's real masterpiece was still in progress. Insulin would take five more years.
THE PERSON
What made Dorothy Hodgkin extraordinary wasn't just her scientific brilliance—though she was brilliant.
It was her warmth. Her generosity. Her collaborative spirit in a field often dominated by competition and ego.
She trained dozens of students who became prominent scientists. She mentored with patience and encouragement. Her laboratory was known as a place of rigorous work and genuine kindness.
She believed science should be generous and precise at once—that discovering how molecules work was a moral act, because that knowledge could relieve suffering.
She was also a lifelong peace activist, campaigning against nuclear weapons and advocating for international scientific cooperation even during the Cold War.
And she did all of this while dealing with progressively worsening rheumatoid arthritis that should have ended her career.
By her 40s, her hands were so deformed she could barely hold a pen. Colleagues described her fingers as "like claws." Simple tasks—writing, pipetting, adjusting equipment—became excruciating.
She kept working. Adapted. Found ways. Continued mapping the invisible architecture of molecules while her own body was being destroyed by disease.
THE LEGACY
Dorothy Hodgkin died in 1994 at age 84, having revolutionized structural biology and enabled treatments that saved millions of lives.
Every diabetic who takes synthetic insulin—Dorothy made that possible.
Every person treated for pernicious anemia—Dorothy revealed the molecule that saves them.
Every antibiotic derived from understanding penicillin's structure—Dorothy showed how it works.
Her notebooks reveal the reality of scientific discovery: tentative strokes, crossed-out calculations, sudden insights, long periods of frustration. Not genius striking like lightning, but patient, stubborn work over decades.
THE MORAL LESSON
Dorothy Hodgkin's story teaches us something profound about the relationship between science and compassion.
She didn't map molecules out of abstract curiosity. She did it because understanding molecular structure meant creating treatments. Because invisible architecture, once revealed, becomes tools for survival.
She spent 35 years on insulin not because she was obsessed with crystals, but because she knew that molecule kept people alive—and understanding it completely would help keep more people alive.
That's not just science. That's moral purpose translated into patient, meticulous action.
THE REMINDER
In an era of quick results and instant gratification, Dorothy Hodgkin spent 35 years working on a single molecule.
With hands crippled by arthritis, she kept working.
When technology couldn't solve problems, she developed new techniques.
When calculations took years, she did them anyway.
She proved that some problems require not brilliance alone, but sustained attention over decades. That patient work, done with moral purpose, can reshape the world.
Somewhere today, a diabetic is injecting synthetic insulin. They're alive because Dorothy Hodgkin spent 35 years mapping a molecule, atom by atom, even as arthritis destroyed her hands. That's the power of patient attention turned toward human survival.

Address

Kalyan
421306

Alerts

Be the first to know and let us send you an email when Inventra Medclin Biomedical Healthcare and Research Center posts news and promotions. Your email address will not be used for any other purpose, and you can unsubscribe at any time.

Contact The Practice

Send a message to Inventra Medclin Biomedical Healthcare and Research Center:

Share

Share on Facebook Share on Twitter Share on LinkedIn
Share on Pinterest Share on Reddit Share via Email
Share on WhatsApp Share on Instagram Share on Telegram