Aelastic

Aelastic aeLASTIC metodo di chinesiologia ortopedica preventiva

21/01/2026

This image illustrates sagittal-plane gait biomechanics by showing how different muscle groups generate and control forces during support (stance) and propulsion (push-off) phases of walking. The skeleton is depicted in mid-gait, with the trailing limb completing propulsion and the leading limb accepting body weight. The colored arrows represent direction and dominance of muscle force vectors, highlighting how muscles cooperate to stabilize joints and move the body forward.

During the support (stance) phase, when the foot is in contact with the ground, vector dominance favors the hip external rotators, hamstrings (ischiocrural muscles), and triceps surae (gastrocnemius–soleus complex). The external rotators help control femoral rotation, preventing excessive internal rotation and maintaining hip stability. At the knee, the hamstrings and triceps surae act synergistically to provide dynamic knee stabilization, limiting excessive flexion or collapse. This stabilizing action is represented by the darker arrows around the knee and ankle, emphasizing control rather than forward motion.

As gait progresses into the propulsion phase, the biomechanical demand shifts. Here, vector dominance moves toward the adductors, hip flexors, and triceps surae. The adductors play a key role in stabilizing the femur within the acetabulum and assisting forward transfer of the body’s center of mass. Hip flexors contribute to limb advancement, while the triceps surae become the primary propulsive engine, generating forward and upward force to push the body ahead. The magenta and blue arrows indicate this forward-directed force transmission through the lower limb.

The image also highlights the interdependence of hip, knee, and ankle mechanics. Forces generated at the ankle during push-off influence knee stability and hip motion upstream. Any alteration in timing, strength, or coordination—such as reduced ankle push-off or delayed hip activation—can disrupt this kinetic chain. This is why deviations at the ankle during stance or at the knee during propulsion can lead to compensatory strategies and muscular overload.

Clinically, the diagram emphasizes that normal gait is not driven by isolated muscles, but by balanced vector interactions across multiple joints. When this physiological modulation is altered—such as excessive adductor dominance or insufficient plantarflexor push-off—functional imbalance develops. Over time, this can manifest as inefficient gait, increased energy expenditure, joint stress, and pathological movement patterns, particularly relevant in neurological and musculoskeletal conditions.

In summary, this image visually explains how muscle forces shift from stabilization to propulsion during walking, demonstrating that efficient gait depends on precise timing, direction, and coordination of muscular vectors throughout the lower limb.

17/01/2026

🦶 How Your Foot Works During Walking – Simple Explanation

This image shows two smart systems inside your foot that help you walk efficiently, absorb shock, and push your body forward with less effort.

🔹 1. Windlass Mechanism (Left Side)

Think of the plantar fascia (a strong band under your foot) like a rope around a wheel.

👣 When toes are flat on the ground

The rope (plantar fascia) is loose

The foot stays flexible

This helps the foot adjust to the ground and absorb shock

👣 When toes bend upward (during push-off)

The rope tightens

The foot arch lifts up

The foot becomes strong and stiff, helping you push forward

👉 This is why bending your toes upward makes your arch look higher.

🔹 2. Foot Arch Works Like a Spring (Right Side)

Your foot arch also acts like a spring.

🔽 When your body weight comes down

The arch flattens slightly

Energy is stored, just like compressing a spring

🔼 When you push off

The arch springs back

Stored energy is released

This helps move you forward without extra muscle effort

🚶 Why This Is Important

✔ Makes walking smooth
✔ Saves energy
✔ Protects joints
✔ Improves balance and speed

If these systems don’t work properly, it can lead to:

Foot pain

Flat feet or high arches

Plantar fasciitis

Poor walking pattern (common in neurological conditions)

🧠 Simple takeaway

🦶 Your foot is not just a support—it’s a flexible shock absorber and a powerful spring.

When the timing is right, walking becomes easy and efficient.

11/01/2026

How to Actually “Fix” Scoliosis

Scoliosis isn’t just a crooked spine.
It’s a load and control problem.

Trying to force the spine straight often increases stress.
What actually helps is improving how load moves through the hips, pelvis, and core.

What to focus on:

• Hip mobility
Limited hip motion forces the spine to rotate and side-bend more than it should.

• Pelvic control
An uneven pelvis changes how force transfers into the spine.

• Core stability
The spine needs support where movement is excessive, not more stretching.

• Posture during movement
How you stand, walk, and train matters more than holding a static posture.

• Better movement patterns
Reducing repeated stress on the same spinal segments helps long-term.

This won’t magically straighten a spine.
But it can reduce pain, improve function, and make scoliosis more manageable by addressing how your body handles load.

11/01/2026

This illustration breaks down how forces move through the foot and lower limb from initial contact to propulsion, highlighting why timing and alignment matter more than where the foot lands.

1️⃣ Initial Contact – Heel Impact (Rearfoot Loading)

At first ground contact, nearly 100% of ground reaction force (GRF) enters through the calcaneus.
• The ankle begins controlled plantarflexion
• The subtalar joint starts pronation to absorb shock
• The tibia undergoes eccentric loading
This phase converts impact forces into manageable loads, protecting the knee, hip, and spine.

2️⃣ Load Transfer – Midfoot & Forefoot Sharing (~50–50)

As the body’s center of mass moves forward, load shifts from the heel to the midfoot and forefoot.
• The talus distributes force posteriorly to the calcaneus and anteriorly to the forefoot
• The medial longitudinal arch deforms elastically, storing energy
• Muscles and ligaments modulate stiffness for stability
Poor control here leads to excessive pronation or rigid loading patterns.

3️⃣ Second Forefoot Impact – Peak Pressure Phase

The metatarsal heads experience peak pressure as the heel lifts.
• Plantar fascia tightens (windlass mechanism)
• Achilles tendon stores elastic energy
• Forefoot joints must tolerate high compressive and shear forces
This is a common phase for metatarsal stress injuries if load is excessive or repetitive.

4️⃣ Forefoot Acceleration – Propulsion Phase

During push-off, forces increase rapidly.
• The ankle plantarflexes powerfully
• The foot transitions from mobile adapter to rigid lever
• Energy stored earlier is released for forward propulsion
Inefficient mechanics here overload the Achilles tendon, calf muscles, and forefoot.

🔍 Key Biomechanical Insight

Injury risk is not about heel vs forefoot strike alone—it’s about how smoothly force is accepted, transferred, and released.
✔️ Good ankle mobility
✔️ Strong intrinsic foot muscles
✔️ Proper timing of pronation–supination
✔️ Efficient hip and knee control

All determine whether impact becomes movement efficiency or tissue overload.

Running and walking are not about avoiding force—but managing it intelligently.

11/01/2026
Allenarsi SI, ma con
06/01/2026

Allenarsi SI, ma con

A new year is about to begin. I wish you the small changes that can make a difference.
31/12/2025

A new year is about to begin. I wish you the small changes that can make a difference.

🎄❤️
24/12/2025

🎄❤️

08/12/2025

la storia delle vertebre dorsali (o toraciche)... Che melodramma in dodici atti!
La Tragicómica Odissea delle Vertebre Toraciche
La loro storia inizia con una grande aspirazione: essere come le sorelle maggiori, le cervicali, quelle mondane, flessibili e sempre in movimento (un po' troppo, a dire il vero). Oppure come le possenti e robuste lombari, le sollevatrici di pesi, le celebrità della palestra della schiena.
L'Atto di Nascita: La Tragedia
Purtroppo per loro, le dodici vertebre toraciche (da T1 a T12) nascono nel bel mezzo del tronco con una missione che sa di condanna: fare da gabbia di sicurezza. 🔒
• Il Ruolo: Devono accogliere e sostenere la gabbia toracica, le dodici paia di costole, e proteggere gli organi vitali (cuore, polmoni).
• La Condanna: Per svolgere il loro ruolo di fortezza inespugnabile, vengono costrette a una vita di relativa immobilità. Le loro spine sono lunghe, le faccette articolari limitano la rotazione, e la presenza ingombrante delle costole le blocca in una postura stoica e un po' rigida.
La loro tragedia è questa: sono le Eroi Non Celebrati del corpo, i pilastri silenziosi. Mentre le cervicali girano a destra e a sinistra, e le lombari si flettono e si estendono per permettere di allacciarsi le scarpe, le toraciche rimangono lì, immobili, mormorando: "Un giorno ci muoveremo liberamente... un giorno!"
Il Colpo di Scena: La Commedia
Ma ecco che la storia si tinge di comico e ironico. Pur essendo le più rigide, le toraciche scoprono di avere un superpotere che le rende essenziali, dando un senso alla loro monotona esistenza.
• Il Sollievo Comico: Quelle stesse costole che le bloccano sono il motivo per cui sono fondamentali per la respirazione! Ogni volta che si respira, sono le articolazioni costo-vertebrali (i punti dove le costole si attaccano alle vertebre) che permettono al torace di espandersi. Sono rigide per il movimento del corpo, ma elastiche per il movimento della vita stessa (il respiro).
• Il Paradosso dell'Osteopata: Spesso, quando la schiena fa male (soprattutto nella zona lombare o cervicale), la colpa è in realtà della troppa rigidità delle toraciche! Se il "centro" non si muove, gli "estremi" devono compensare, lavorando troppo e finendo per infortunarsi. Quindi, per risolvere i problemi delle altre, si deve massaggiare e manipolare la rigida toracica.
La Conclusione: L'Eroe Silenzioso
La storia si conclude con le vertebre toraciche che accettano il loro destino. Sono la spina dorsale emotiva, il luogo dove, secondo molti, si accumulano le tensioni dovute allo stress e alla postura curva di fronte al computer (il "gobbo" del lavoratore moderno).
Sono il triste, ma fondamentale, ponte tra il pensiero e l'azione, tra la testa e il bacino. Un po' rigide, un po' bloccate, ma dannatamente importanti per non farci cadere i polmoni. 🤣
In sintesi, la loro vita è una commedia perché, pur essendo le più rigide, sono le protagoniste silenziose di ogni respiro

Indirizzo

Perugia

Orario di apertura

Lunedì 08:00 - 19:00
Martedì 08:00 - 19:00
Mercoledì 08:00 - 19:00
Giovedì 08:00 - 19:00
Venerdì 08:00 - 19:00

Telefono

393386545537

Notifiche

Lasciando la tua email puoi essere il primo a sapere quando Aelastic pubblica notizie e promozioni. Il tuo indirizzo email non verrà utilizzato per nessun altro scopo e potrai annullare l'iscrizione in qualsiasi momento.

Contatta Lo Studio

Invia un messaggio a Aelastic:

Condividi

Share on Facebook Share on Twitter Share on LinkedIn
Share on Pinterest Share on Reddit Share via Email
Share on WhatsApp Share on Instagram Share on Telegram

aeLASTIC - the original one since 2015

aeLASTIC migliora l'equilibrio, la coordinazione motoria, la forza e la resistenza

aeLASTIC è di semplice applicazione può essere usato a qualsiasi età

aeLASTIC è la chiave per accendere i tuoi movimenti - muoviti sicuro muoviti con aeLASTIC un attrezzo di alta qualità, su base scientifica, che guida il tuo corpo alla massima performance evitando movimenti dannosi e tensioni osteo-articolari