09/11/2025
A study led by Cedars‑Sinai Medical Center created “young” immune cells (specifically mononuclear phagocytes) from human induced-pluripotent-stem-cells (iPSCs). These were infused into aging mice and mouse models of Alzheimer’s disease.
SciTechDaily
+2
Cedars-Sinai
+2
After the infusion:
The treated mice performed better on memory tests compared to untreated mice.
ScienceDaily
+1
In the hippocampus, the number of “mossy cells” (important for learning/memory) was preserved in the treated mice, whereas normally these decline with aging/Alzheimer’s.
SciTechDaily
+1
The brain’s immune cells (microglia) appeared healthier: their processes (branches) remained more extended rather than retracting (which is a sign of aging/decline).
Cedars-Sinai
Mechanistically: The infused immune cells did not necessarily enter the brain itself, suggesting their beneficial effect might be indirect (for example by secreting anti-aging signals, or absorbing pro-aging factors from circulation).
SciTechDaily
+1
Additional research shows that brain-border macrophages and immune cells regulating cerebrospinal fluid (CSF) flows may play an important role in clearing harmful proteins and thereby protecting brain aging.
MIT News
These are preclinical (animal, mostly mice) studies. We do not yet have human clinical trials showing the same effect. For instance the Cedars-Sinai work is still at the mouse-model stage.
SciTechDaily
+1
The mechanism is not fully worked out. The fact that the therapeutic cells didn’t cross into the brain suggests complex indirect signaling is involved. Until the mechanism is resolved, translation to humans entails much uncertainty.
SciTechDaily
+1
“Reversal” in mice is promising, but the degree and durability of effect—and what “reversal” precisely means (slowed decline, restored function, etc.)—are still under investigation.
Safety and scalability: Taking iPSCs and making therapeutic immune cells is technically expensive, complex, and has regulatory hurdles (especially in human treatment).
While our post generalizes to “immune system / rejuvenating immune system for aging/regenerative medicine,” the research is quite specific around particular immune cell types and brain aging models; one must be careful not to over-generalize into claims that exceed the evidence.
Because we are involved in “bioelectric medical machines / cell recharge / regeneration” etc, we want to draw a clear distinction between mechanistic plausibility (immune cell rejuvenation) and the specific modality (bioelectric therapy) we promote—until we have direct data linking our machines to immune-cell rejuvenation.
🔍 Relevance to IPON & our work
Given our interest in cell repair, regeneration, bioelectric treatments, and neural recovery (e.g., eye cells, neural cells), this research is relevant in several ways:
Supports the broader paradigm: The idea that immune/repair systems can shift from decline to rejuvenation aligns with our narrative that cells (and their environment) are modifiable and repair-capable.
Potential synergy: While the study is about immune cells, the principle of “cell repair/regeneration” is compatible with our bioelectric therapy work. We might use this research to support an underlying hypothesis: that enhancing immune cell function + cellular repair (via bioelectric methods) could have additive or synergetic effects.
Since we are planning an awareness campaign about regenerative medicine and cell health, this is a strong, recent example to cite (with appropriate caveats) to show the frontier of research.
Research collaboration angle:We can use this as a bridge to approach immune-cell/regen medicine labs, to explore whether bioelectric fields influence immune cell rejuvenation (since immune cells are electrically active to some degree) — which might be a novel research axis for IPON. 🧠✨ Reversing Memory Loss Through Immune System Rejuvenation?
A groundbreaking new study from Cedars-Sinai Medical Center (USA) has shown that lab-grown immune cells can reverse memory loss and signs of brain aging in mice.
Researchers created “young” immune cells in the lab and introduced them into aging mice.
The results were astonishing:
✅ Reduced brain inflammation
✅ Restored neuron activity
✅ Improved memory performance
These lab-grown cells didn’t even need to enter the brain — they worked indirectly, signaling the body to self-repair and rebalance inflammation. This finding suggests that aging and neurodegeneration may not be irreversible after all — and that by rejuvenating the immune system, the brain’s natural repair pathways can be re-activated.
🔬 This aligns with what we at IPON Future Wellness Equipment Center have long believed — that the body holds its own blueprint for renewal, and that when cellular power is restored through bioelectric recharging, repair and regeneration can begin naturally.
While this study was conducted in mice, it opens a powerful window into the future of regenerative medicine — where immune rejuvenation, bioelectric therapy, and cellular repair work together to slow or even reverse the biological clock.
🧩 Aging, it seems, isn’t just the passage of time — it’s a loss of balance in our cellular communication. By restoring that balance, the body remembers how to heal.
👉 What do you think?
Could rejuvenating our immune system — and recharging our cells — be the true path to reversing brain aging?
📚 Read more about the study here:
Cedars-Sinai Newsroom – Young Immune Cells Could Treat Alzheimer’s and Aging Symptoms
(This post is for educational and awareness purposes only. It does not replace professional medical advice.)
由西达赛奈医疗中心牵头的一项研究利用人类诱导多能干细胞 (iPSCs) 培育出“年轻”的免疫细胞(特别是单核吞噬细胞)。研究人员将这些细胞输注到衰老小鼠和阿尔茨海默病小鼠模型体内。
SciTechDaily
+2
西达赛奈
+2
输注后:
与未接受治疗的小鼠相比,接受治疗的小鼠在记忆测试中表现更佳。
ScienceDaily
+1
在接受治疗的小鼠海马体中,“苔藓细胞”(对学习/记忆至关重要)的数量得以保留,而通常情况下,这些细胞会随着衰老/阿尔茨海默病而减少。
SciTechDaily
+1
大脑中的免疫细胞(小胶质细胞)看起来更健康:它们的突起(分支)保持伸展状态,而不是收缩(收缩是衰老/衰退的标志)。
西达-赛奈医疗中心
机制上:输注的免疫细胞未必能直接进入大脑,这表明它们的有益作用可能是间接的(例如,通过分泌抗衰老信号或吸收循环中的促衰老因子)。
SciTechDaily
+1
其他研究表明,脑边界巨噬细胞和调节脑脊液 (CSF) 流动的免疫细胞可能在清除有害蛋白质方面发挥重要作用,从而保护大脑免受衰老的影响。
麻省理工学院新闻
这些是临床前(动物,主要是小鼠)研究。我们目前还没有人体临床试验表明具有相同的效果。例如,西达-赛奈医疗中心的研究仍处于小鼠模型阶段。
SciTechDaily
+1
其机制尚未完全阐明。治疗性细胞未能进入大脑这一事实表明,其中涉及复杂的间接信号传导。在机制阐明之前,将其应用于人体仍存在诸多不确定性。
科技日报
+1
小鼠的“逆转”效果令人鼓舞,但其程度和持久性,以及“逆转”的确切含义(例如,减缓衰退、恢复功能等),仍在研究中。
安全性和可扩展性:提取诱导多能干细胞 (iPSC) 并制备治疗性免疫细胞在技术上成本高昂、复杂,且面临监管障碍(尤其是在人体治疗方面)。
虽然我们的文章将主题概括为“免疫系统/用于抗衰老/再生医学的免疫系统再生”,但相关研究主要针对特定类型的免疫细胞和脑衰老模型;因此,必须谨慎,避免过度概括,得出超出证据范围的结论。
由于我们从事“生物电医疗设备/细胞再生/再生”等相关研究,我们希望明确区分机制上的合理性(免疫细胞再生)和我们所推广的具体疗法(生物电疗法)——直到我们获得直接数据证明我们的设备与免疫细胞再生之间存在关联。
🔍 与IPON及我们工作的相关性
鉴于我们对细胞修复、再生、生物电疗法和神经恢复(例如眼细胞、神经细胞)的兴趣,这项研究在以下几个方面与我们的工作相关:
支持更广泛的范式:免疫/修复系统可以从衰退转向复苏的观点与我们关于细胞(及其环境)具有可塑性和修复能力的论述相符。
潜在的协同作用:虽然这项研究是关于免疫细胞的,但“细胞修复/再生”的原理与我们的生物电疗法工作相契合。我们可以利用这项研究来支持一个潜在的假设:增强免疫细胞功能+细胞修复(通过生物电方法)可能产生叠加或协同效应。
由于我们正在计划开展一项关于再生医学和细胞健康的宣传活动,这是一个强有力的、最新的案例(在适当的前提下),可以用来展示该领域的前沿研究。
研究合作角度:我们可以以此为桥梁,与免疫细胞/再生医学实验室接洽,探索生物电场是否会影响免疫细胞的再生(因为免疫细胞在某种程度上具有电活性)——这可能是 IPON 的一个新研究方向。🧠✨ 通过免疫系统再生逆转记忆衰退?
美国西达-赛奈医疗中心一项突破性研究表明,实验室培育的免疫细胞可以逆转小鼠的记忆衰退和大脑衰老迹象。
研究人员在实验室中培育了“年轻”的免疫细胞,并将它们导入衰老小鼠体内。
结果令人震惊:
✅ 脑部炎症减轻
✅ 神经元活性恢复
✅ 记忆力提升
这些实验室培育的细胞甚至无需进入大脑——它们通过间接方式发挥作用,向身体发出信号,启动自我修复机制并重新平衡炎症。这一发现表明,衰老和神经退行性疾病或许并非不可逆转——通过再生免疫系统,可以重新激活大脑的自然修复通路。
🔬 这与我们IPON未来健康设备中心长期以来的理念不谋而合——人体自身拥有自我更新的蓝图,当通过生物电充电恢复细胞能量时,修复和再生便能自然启动。
虽然这项研究是在小鼠身上进行的,但它为再生医学的未来打开了一扇强有力的窗口——免疫力恢复、生物电疗法和细胞修复协同作用,可以延缓甚至逆转生物钟的进程。
🧩 衰老似乎不仅仅是时间的流逝,更是细胞通讯失衡的表现。通过恢复这种平衡,身体就能重新获得自我修复的能力。
👉 您怎么看?
恢复免疫系统活力——并为细胞充电——是否是逆转大脑衰老的真正途径?
📚 点击此处阅读更多研究详情:
西达赛奈医疗中心新闻中心——年轻免疫细胞或可治疗阿尔茨海默病及衰老症状
(本文仅供教育和普及之用,不构成专业医疗建议。)
“Young” immune cells created by Cedars-Sinai investigators reversed signs of aging and Alzheimer’s disease in the brains of laboratory mice, according to a study published in the journal Advanced Science. The immune cells, which were produced from human stem cells, could be used to develop new...